Dilute solution properties of methyl $methacrylate-*acrylonitrile*$ **copolymer (MA 1)**

A. K. Kashyap and V. Kalpagam

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India **and C. Rami Reddy**

Central Leather Research Institute, Madras-600020, India (Received 9 February 1977; revised 13 April 1977)

This paper deals with studies on the dilute solution **properties of** methyl methacrylate-acrylonitrile **copolymer of 0.289 mole fraction** *(mf)* **of acrylonitrile composition.** Mark-Houwink parameters **for this copolymer have been evaluated in acetonitrile (MeCN), 2-butanone (MEK), dimethylformamide** (DMF) and 3,-butyrolactone (3,-BL). The solvent **power is** found to be in the **order of** MEK < MeCN < DMF < 7-BL at 30°C. Herein, probably for the first time, the steric factor for the copolymer **is found** to be lower than that for the parent homopolymers and the excess interaction parameter, χ_{AB} is found to be negative. This probably suggests that the units are compatible to each other.

The behaviour of copolymers in solution is very complex compared to that of their parent homopolymers. Earlier studies of their solution properties have been mainly directed
towards the study of the styrene/methyl methacrylate co. Light scattering measurements were carried out at 30[°]C towards the study of the styrene/methyl methacrylate co-

with green light $(\lambda = 5460 \text{ Å})$ using a Brice–Phoenix light polymer^{1,10} system where styrene is a non-polar unit. The with green light (λ = 5460 A) using a Brice-Phoenix light theory developed by Stockmover at al.¹ could successfully scattering photometer (Type 1000-D) over theory developed by Stockmayer *et al.* ¹ could successfully scattering photometer (Type 1000-D) over the angular
range of 45° to 135° with a cylindrical cell. The instrument explain the properties of this system. More recently, this range of 45 to 135 with a cylindrical cell. The instrument
theory has been extended to explain the properties of other was calibrated with well purified and disti theory has been extended to explain the properties of other copolymer systems such as styrene–acrylonitrile copolymer². ($R90 = 16.5 \times 10^{-6}$ cm⁻¹). The solutions were prepared in
However, very little work has been done on the copolymer
murified and freshly distilled solvents a However, very little work has been done on the copolymer
systems like methyl methacrylate/acrylonitrile (MMA = AN) solutions were rendered dust-free by repeated filtration. The systems like methyl methacrylate/acrylonitrile (MMA-AN) solutions were rendered dust-free by repeated filtration. I
conclumer⁷ where both the constituents are notar. The concentration $(2 \times 10^{-3} \text{ to } 0.5 \times 10^{-3} \text{ g/ml})$ copolymer⁷, where both the constituents are polar. The concentration (2 x 10 $\frac{1}{2}$ x 10 $\frac{1}{2}$ by successive dilution. nature of the intramolecular interactions may be quite dif-

we report the results of these studies on a copolymer of gramme was report the results of these plots. 0.289 mf of AN, denoted as MA1.

MA1 was prepared by the solution polymerization also be due to the fact that, for such a small difference in $\frac{1}{2}$ the refractive indices of the parent homopolymers itself method using benzoyl peroxide (0.05 mol %) as the initiator, the reflactive indices of the parent homopolymers itself
(i.e. 0.025), the Bushuk–Benoit theory⁶ is no longer effec-
 (1.9025) , the Bushuk–Benoit theory⁶ i MA1 was fractionated using acetonitrile-di-isopropylether $\frac{(1.6, 0.025)}{1.00}$, the Bushuk-Benoit theory 6 is no longer effec-
as the schematics a column $\frac{1}{2}$ for a coas the solvent/non-solvent system. The γ -values ranged from 0.363 to 0.535. The details of the preparation of the co-
noting to in a copolymer of poly(ethylene oxide) and polycarbonate. polymer, and the criteria for selecting this solvent/nonsolvent pair, have been described elsewhere³. The fractiona-
solvent pair, have been described elsewhere³. The fractiona-
tering of copolymer solutions were carried out in MeCN tion was effected with respect to molecular weight only.

Specific refractive index increment

The specific refractive index increment *(dn/dc)* of the copolymer was measured in MEK, MeCN and DMF with a Brice-Phoenix type of differential refractometer (construc- *Viscosity* ted in this laboratory) at 30°C with green light (λ = 5460 Å). The intrinsic viscosities, [η], of the copolymer solutions

INTRODUCTION The values (in ml/g) in MEK, MeCN, and DMF are 0.117, 0.141 and 0.063 respectively.

Ferent from those of the other systems.
With this in view studies were undertaken on the solu-
With this in view studies were undertaken on the solu-
radius of gyration $\langle S^2 \rangle_z$, and the second virial coefficient A With this in view, studies were undertaken on the solu-
n properties of MMA-AN copolymers. In this paper were determined from Zimm plots⁴. Beattie *et al.*'s protion properties of MMA-AN copolymers. In this paper,
we report the results of these studies on a copolymer of gramme⁵ was modified as an aid to the manual construction

The molecular weights obtained from all three solvents (MeCN, MEK and DMF) agree well within experimental EXPERIMENTAL error. This suggests that any polydispersity in composition which may be present in this copolymer system poses no *Polymerization and fractionation*
also be due to the fact that, for such a small difference in polymer of MMA-AN of 0.48 *mf* of AN, and by Spatorico⁸

only, because of its high *dn/dc* value.

Table 1 gives the light scattering results. A typical Zimm plot is shown in *Figure 1*.

30°C are 0.72, 0.65 and 0.68 respectively and the values for PAN in DMF¹¹ and γ -BL¹² are 0.72 and 0.69 respectively.

polymer in these solvents are higher than those for both

solvent for PMMA¹³ and a non-solvent for PAN, the a value

mum at 45° C, whereas for γ -BL, a maximum is observed at

were determined at different temperatures in the concen- at the same temperature, though all the solvents seem to be tration range 0.1 to 0.5 g/dl, with suspended level dilution good solvents. viscometers. The kinetic energy and shear correction fac-
tors were not applicable. Table 2 gives the viscosity data. 30° C are 0.72, 0.65 and 0.68 respectively and the values for

RESULTS AND DISCUSSION From this, it is clear that the α values obtained for the co-

Mark-Houwink relation \blacksquare **the parent homopolymers.** Even in MeCN, which is a θ -

From the plots of log $[\eta]$ *versus* $\log M_w$ in *Figure 2*, Mark-
Houwink relations were established for MA1 in MeCN, MEK, the copolymer in this solvent is 0.746 which is compar-Houwink relations were established for MAI in MeCN, MEK, able to the values obtained in the other solvents.
DMF and γ -BL at different temperatures. Values of K' and The offect of temperature on the values of a is DMF and γ -BL at different temperatures. Values of K' and The effect of temperature on the values of a is not of uni-
a are given in Table 3.

Form nature. In the case of DMF, the a value shows a mini-
From the values of a we see that, for the copolymer, the mount $45\degree C$ whereas for a BL a maximum is observed at solvent power is in the order MEK \leq MeCN \leq DMF $\leq \gamma$ -BL $\frac{100 \text{ m}}{45^\circ \text{C}}$.

Table I Light scattering results for MA1

\bar{M}_{W} x 10 ⁻⁵	$\langle S^2 \rangle$	$A_2 \times 10^4$	
79.03	0.039	0.40	O 61
63.23	0.031	0.37	
47.72	0.024	0.55	
31.61	0.016	0.69	
23.71	0.012	0.65	$O-4$
21.68	0.011	0.70	

Figure 1 Zimm plot for the fraction MA 14. A, 45°; B, 60°; C, 75°; $Q = 0.2$; G, 45°C, $Q = 0.3$; H, 60°C, $Q = 0.4$. \circ , MeCN; \bullet , MEK; D, 90° ; E, 105 $^\circ$; F, 120 $^\circ$; G, 135 $^\circ$. K* = 13.18 x 10 $^{-8}$ mol g $^{-2}$ cm 2 $\qquad \quad \quad \Box$, DMF; $^\Delta$, γ -BL

							H)
	O·6						G Ę
	O:4						Ę D
	O ₂						έ Ά
L_{O} g (m) + Q	\circ						B)
	$-O2$						
	-04						
	$-O.6$						
		$\overline{60}$	$\overline{6\cdot 2}$	64 Log \bar{M}_{w}	66	68	

Sin² θ /2+500c *Figure 2* Mark-Houwink plot. A, 30°C, Q = 0.0; B, 30°C, Q = -0.1 ; C, 30°C, $Q = 0.0$; D, 45°C, $Q = 0.1$; E, 60°C, $Q = 0.2$; F, 30°C, $Q = 0.2$; G, 45°C, $Q = 0.3$; H, 60°C, $Q = 0.4$. \circ , MeCN; \bullet , MEK;

Fraction			MEK 30° C	DMF			γ -BL		
	\overline{M}_{W} x 10 ⁻⁵	MeCN 30° C		30° C	45° C	60° C	30° C	45° C	60° C
MA 111	79.03	1.190	1.150			—	1.870	1.800	1.800
MA 112	63.23	1.010	0.980	1.200	1.135	1.160	$\overline{}$	$\overline{}$	
MA 121	47.72	0.820	0.795	$\overline{}$	$\overline{}$	—	1.257	1.190	1,190
MA 122	42.95	0.750	—	0.870	0.850	0.840	1.135	1.070	1,070
MA 113	37.07	0.670	-	0.775	0.768	0.740			
MA14	31.61	0.580	0.570	0.670	0.670	0.650	$\overline{}$		
MA 15	23.71	0.480	$\overline{}$		$\overline{}$	÷,	0.700	0.650	0.660
MA 16	21.68	0.460	0.450						
MA 17	8.38	0.220	$\overline{}$	0.238	0.256	0.218	0.299	0.269	0.289

Table 2 Viscosity results for MA1 ($\lceil \eta \rceil$ values)

Figure 3 Temperature variation of $[\eta]$. A, MA 122; B, MA 113; C, MA 14; D, MA 17; E, MA 121; F, MA 111. O, DMF; \triangle , γ -BL

Solvent	Temperature (°C)	$K' \times 10^4$	а	
MeCN	30	0.085	0.746	
MEK	30	0.111	0.727	
DMF	30	0.050	0.791	
	45	0.073	0.764	
	60	0.029	0.824	
γ -BL	30	0.044	0.817	
	45	0.027	0.845	
	60	0.053	0.800	

The behaviour of the linear deformation of the polymer $\frac{1}{\alpha}$ lower. chain, due to polymer-solvent interaction in a good solvent Such large differences in the unperturbed dimensions in
medium, is represented by the Flory–Fox equation¹⁴: different solvents have been reported for stiff cha

$$
[\eta] = K_0 \overline{M}_{w}^{1/2} \alpha_{\eta}^3 \tag{1}
$$

$$
K_0 = \phi_0 \left[\left(r_0^2 \right) / \overline{M}_w \right]^{3/2}
$$

 (2)

$$
\begin{array}{c} \text{Temperature} \\ \text{solvent} \end{array}
$$

$$
\begin{array}{c} \text{Temperature} \\ \left(^{\circ} \text{C} \right) \end{array}
$$

$$
\begin{array}{c} \text{Temperature} \\ \text{K}_0 \times 10^3 \end{array}
$$

$$
\begin{array}{c} \left(r_0^2 \right) / M_w \times \\ \text{I} \end{array}
$$

and α_n , the hydrodynamic expansion factor is given by:

$$
x_{\eta}^{3} = \left[\eta\right]/\left[\eta\right]_{\theta} \tag{3}
$$

where $[\eta]_{\theta}$ is the value of $[\eta]$ at θ -temperature, ϕ_{0} is the hydrodynamic constant, and $\langle r_{0}^{2} \rangle$ is the unperturbed meansquare end-to-end distance.

with an increase in temperature; in good solvents, $[\eta]$ de-F \sim creases with an increase in temperature; and in athermal solvents, $\lceil \eta \rceil$ is independent of temperature¹⁵. It was pointed out by Kawai and Ueyama¹⁶ that the chains are expanded $\vert \cdot \vert$ most at the temperature at which $\vert \eta \vert$ is maximum. The decrease of $[\eta]$ after the maximum is explained by the decrease of $\langle r_{\rm g}^2 \rangle$.

Figure 3 shows plots of $[n]$ *versus* temperature T. In DMF, $[\eta]$ is almost the same at 30° and 45°C. The further E \triangle decrease in [η] could be viewed as being due to the skeletal 12 decrease of chain dimensions. In the case of γ -BL, a different trend is noticed; $[\eta]$ decreases with increase in temperature, which seems to be characteristic of the behaviour of the copolymers in a good solvent, and then remains almost constant.

C σ σ The dependence of $[\eta]$ on \overline{M}_w in a good solvent is made use of in calculating the unperturbed dimensions (K_0) and the long range interaction parameter B . Several graphical procedures are available for the estimation of K_0 from $[\eta]$ \Box in non-ideal solvents \Box The simplest one is due to Stock- $D \sim$ \sim mayer and Fixman¹⁸, and is widely used for studies on poly- \Box mers and copolymers. The relation is given by:

$$
[\eta] / M_w^{1/2} = K_0 + 0.51 B \phi_0 \overline{M}_w^{1/2}
$$
 (4)

$$
B = 2\overline{\nu}^2 (\gamma_2 - \chi_1) / N_A V_1 \tag{5}
$$

where $\bar{\nu}$ is the specific volume of the polymer, V_1 is the *Table 3* Mark-Houwink parameters for MA1 χ_1 is the solute-solvent, N_A is Avogadro's number, and χ_1 is the solute-solvent interaction parameter.

 K_0 values were evaluated by this method and are given in Table 4. Figure 4 gives the Stockmayer-Fixman plots.

From the Table, it can be seen that the unperturbed dimensions depend on the solvent as well as on the temperature. The values of K_0 in MeCN and MEK at 30°C are the same within the limits of experimental error, while the values in DMF and γ -BL (the solvents for the parent homopolymers) are smaller at this temperature. The corresponding K_0 values for PMMA¹⁰ and PAN¹⁹ are 0.78 \times 10⁻³ and 2.05×10^{-3} . For the copolymer, the K_0 values in all the solvents are lower than the K_0 values for the parent homopolymers. In general, it is observed that in a solvent with *Temperature variation of* $[\eta]$

larger value of a (the Mark-Houwink exponent) K_0 values

> different solvents have been reported for stiff chain polymers such as cellulose derivatives^{20,21}.

where *Table 4* Short range interaction parameters for MA1

$T_0 = \phi_0 [\langle r_0^2 \rangle / \overline{M}_w]^{3/2}$	$\left(2\right)$	solvent	Temperature $(^{\circ}C)$	$K_0 \times 10^3$	$\langle r_0^2 \rangle / M_W \times$ 10^{17}	σ
α_n , the hydrodynamic expansion factor is given by:		MeCN	30	0.175	1.622	1.22
		MEK	30	0.182	1.665	1.23
		DMF	30	0.140	1.397	1.13
$\alpha_n^3 = [\eta]/[\eta]_n$	(3)		45	0.180	1.652	1.23
			60	0.102	1.132	1.02
re $[\eta]_{\theta}$ is the value of $[\eta]$ at θ -temperature, ϕ_0 is the		γ -BL	30	0.150	1.463	1.16
rodynamic constant, and $\langle r_0^2 \rangle$ is the unperturbed mean-			45	0.132	1.344	1.11
re end-to-end distance.			60	0.158	1.515	1.18

Figure 4 Stockmayer--Fixman plot. A, 30°C, $Q = 0.0$; B, 30°C, $Q = 0.1$; C, 30°C, $Q = 0.2$; D, 45°C, $Q = 0.3$; E, 60°C, $Q = 0.4$; $Q = 0.1$; C, 30°C, $Q = 0.2$; D, 45°C, $Q = 0.3$; E, 60°C, $Q = 0.4$; for the copolymer and parent homopolymers. χ_A and χ_B
F, 30°C, $Q = 0.4$; G, 45°C, $Q = 0.5$; H, 60°C, $Q = 0.6$, \circ , MeCN. F, 30°C, $Q = 0.4$; G, 45° C, $Q = 0.5$; H, 60° C, $Q = 0.6$, \circ , MeCN. values, interpolated from the data on PMMA¹⁰ and \bullet , MEK; \Box , DMF; \triangle , γ -BL

tained from the Stockmayer-Fixman equation using a value served for other copolymer systems, such as styrene/ of 2.68 \times 10²¹ dl/g for ϕ_0 ²². The results are included in methyl methacrylate copolymer¹⁰.

chain conform to an idealized random-flight model, and the chain consists of two different kinds of independent statistical chain element, the unperturbed mean-square end-toend distance would obey the relation¹:

$$
[(r_0^2)/\overline{M}_w]_{C_0} = W_A [(r_0^2)/\overline{M}_w]_A + W_B [r_0^2/\overline{M}_w]_B
$$
 (6) Temperature

where W_A and W_B are the weight fractions, and the quantities in brackets are characteristic of homopolymers.

Steric factor

The steric factor σ , which is a measure of the hindrance to internal rotation about the carbon-carbon single bond * Calculated from Shimura's data on MMA-AN copolymer⁷ of the main chain of a flexible polymer molecule in the unperturbed state, is defined by:

$$
\sigma = \left[\langle r_0^2 \rangle / \langle r_{0f}^2 \rangle \right]^{1/2} \tag{7}
$$

where $\langle r_{0f}^2 \rangle$ is the mean-square end-to-end distance of the polymer chain with complete free internal rotation about the carbon-carbon bond of the main chain. Table 4 includes the σ values as well.

It will be seen that the σ values of this copolymer are smaller than 2.2, the value reported for the parent homopolymers²³.

Long range interaction parameter

The long range interaction parameter B , evaluated from the Stockmayer-Fixman equation, is given in *Table 5.*

From the values of B , the solvent power for the various solvents can be arranged as $MEK < MeCN < DMF < \gamma$ -BL, -~ these solvents. B shows a minimum at 45°C in the case of DMF. In γ -BL, *B* decreases with an increase in temperature.

> 5, where χ_1 values are also included, that χ_1 is independent of solvent and temperature, It is also interesting to note expected from the present polymer theories for good

The excess interaction parameter, χ_{AB} , were calculated \bigcirc from the χ_1 values of copolymers and homopolymers using the expression¹

$$
0.4 \t 0.8 \t 12 \t 16 \t 20 \t 2.4 \t 2.8 \t X_1 = x_A x_A + x_B x_B - x_A x_B x_{AB} \t (8)
$$

where x_A and x_B are the mole fractions of A and B in the copolymer. x_1 , x_A and x_B are the interaction parameters PAN²⁴, are given in *Table 6.* χ _{AB} values calculated from equation (8) are included in $Tab\tilde{l}e$ 5. It will be seen from the *Table* that these values are negative. These values do show a solvent effect, but are practically independent of temperature. The χ_{AB} value calculated for the data given *Unperturbed dimensions* by Shimura 7 for MMA-AN copolymer of 0.48 *mf* of AN is Values of $\langle r_0^2 \rangle / \overline{M}_w$ were calculated from K_0 values ob-
also negative. This trend is opposite to what has been ob-

Table 4. **The large values of a, the Mark-Houwink exponent, and If the unperturbed average dimensions of a copolymer the expansion factor** α 3 obtained through the use of the the expansion factor α_n^3 obtained through the use of the

Table 5 Long range interaction parameters for MA1

$\left[\langle r_0^2 \rangle / M_w \right]_{C_0} = W_A \left[\langle r_0^2 \rangle / M_w \right]_A + W_B \left[\langle r_0^2 \rangle / M_w \right]_B$ (6) ere W_A and W_B are the weight fractions, and the quanti-	Solvent	Temperature $(^{\circ}C)$	$B \times 10^{27}$	X ₁	XAB
in brackets are characteristic of homopolymers.	MEK	30	0.061	0.499	
	MeCN	30	0.067	0.498	
The value of $\left[\langle r_0^2 \rangle / \overline{M}_w \right]_{C_0}$ computed for MA1 from equa- n(6) is 1.096 × 10 ⁻¹⁷ cm ² , by taking 0.949 × 10 ⁻¹⁷ and	DMF	30	0.098	0.497	-0.32
		45	0.082	0.498	-0.32
81×10^{-17} cm ² as the values for PMMA and PAN ²³ . The		60	0.107	0.497	-0.32
erimental values are higher than this ideal value.	γ -BL	30	0.143	0.496	-0.24
		45	0.137	0.496	-0.25
		60	0.129	0.497	-0.26
ric factor	Copolymer-				
The steric factor σ , which is a measure of the hindrance	DMF*	30	0.850	0.476	-0.35

Table 6 Interaction parameters for homopolymers

Solvent	Temperature $(^{\circ}C)$	XΔ	x_R	
DMF	30	0.486	0.285	
	45	0.484	0.293	
	60	0.481	0.295	
γ -BL	30	0.487	0.335	
	45	0.484	0.337	
	60	0.479	0.340	

Fraction				DMF			γ -BL		
	\overline{M}_{W} x 10 ⁻⁵	MeCN 30° C	MEK 30° C	30° C	45° C	60° C	30° C	45° C	60° C
MA111	79.03	2.417	2.248				4.435	4.853	4.058
MA 112	63.23	2.295	2.142	3.409	2.504	4.517	$\overline{}$		
MA 121	47.72	2.147	1.996	∽	$\overline{}$	$\overline{}$	3.833	4.135	3.450
MA 122	42.95	2.068	$\overline{}$	2.998	2.279	3.982	3.652	3.907	3.275
MA 113	37.07	1.986	$\overline{}$	2.869	2.212	3.775		$\qquad \qquad \qquad$	
MA14	31.61	1.865	1.758	2.691	2.092	3.589	$\overline{}$	$\overline{}$	
MA15	23.71	1.776	-		$\overline{}$		3.030	3.203	2.715
MA 16	21.68	1.785	1.681		$\overline{}$	—	$\overline{}$		
MA17	8.38	1.375	$\overline{}$	1.861	1.553	2.342	2.182	2.222	1,996

Table 7 Evaluation of α_{η}^2 values by Stockmayer--Fixman equations

Stockmayer-Fixman equation *(Table* 7), suggest that there REFERENCES is a large extension of these molecules in these solvents due to unusually favourable polymer-solvent interaction. On the other hand, the very low values of the second virial co-

efficient A_2 , and the large values of χ_1 , together with the B. N. J. Polym. Sci. 1955, 16, 517 efficient A_2 , and the large values of χ_1 , together with the B.N.J. *Polym. Sci.* 1955, 16, 517
observed bigh values of a suggest that the large extension 2 Reddy, C.R. and Kalpagam, V.J. *Polym. Sci. (Polym. Phys.* observed high values of a, suggest that the large extension of these molecules can be understood in terms of unusual and the state of these molecules can be understood in terms of unusual and Kashyap, A. K., Reddy, C. R. and Kalpagam, *V. J. J. Indian* short range interactions which affect the unperturbed *Chem. Soc.* 1976, 53, 106 dimensions. Cellulose derivatives also exhibit high values of 4 Zimm, B. H. J. Chem. Phys. 1943, 16, 1093
a and very low values of A_2 which have been interpreted 5 Beattie, W. H., Laudenslager, R. K. and Moacanin, J. NA a and very low values of A_2 , which have been interpreted as the typical properties of stiff-chain polymers. From the 6 Bushuk, W. and Benoit, H. *Can. J. Chem.* 1958, 36, 1616 large values of *an3* obtained by applying the Flory-Fox 7 Shimura, Y. *Bull Chem. Soc. Jpn* 1967, 40, 273 equation¹⁴, Kurata and Stockmayer²³ concluded that these 8 Spatorico, A. L. J. *Appl. Polym. Sci.* 1974, 18, 1793 equation¹⁴, Kurata and Stockmayer²³ concluded that these $\begin{array}{ccc}\n & 8 \\
\text{5} & \text{5} & \text{5} \\
\text{6} & \text{6}\n\end{array}$

9 Chinai, S. N., Matlack, J. D., Resnick, A. L. and Sanuels, R. J.

Foroughle polymer solvent interactions ra favourable polymer-solvent interactions rather than unusual *J. Polym. Sci.* 1955, 17, 391
chart range interactions. Becont theoretical studies^{20,21} 10 Reddy, C. R., Kashyap, A. K. and Kalpagam, V. Polymer short range interactions. Recent theoretical studies^{20,21} 10 Reddy, C. R., Kashyap, A. K. and K
suggest that these chains assume large extensions mainly due 11 Krigbaum, W. R. and Tokita, N. *J. P* to the short range interactions, indicating that the 12 Shibukawa, T., Sone, M., Uchida, A. and Iwahari, K. J.
Stockmaver–Fixman equation may not hold for stiff-chain *Polym. Sci.* (A-1) 1968, 6, 147 Stockmayer-Fixman equation may not hold for stiff-chain *13* polymers.

13 Fox, T. G. *Polymer* 1962, 3, 111

14 Flory, P. J. and Fox, T. G. Jr, J.

The present experimental data (low A_2 values and large χ_1 , α_{η}^3 and *a* values) suggest that the incorporation of AN 15 Flory, P. J. 'Principles of Polymer Chemistry', Cornell Univer-
in MMA (0.289 *mf* of AN) might have introduced some sity Press, Ithaca, New York, in MMA (0.289 *mf* of AN) might have introduced some sity Press, Ithaca, New York, 1953, pp.622–626
stiffness in the chain and hence the Stockmayer-Fixman 16 Kawai, T. and Ueyama, T. J. Appl. Polym. Sci. 1960, 3, 227 stiffness in the chain and hence the Stockmayer-Fixman 16 Kawai, T. and Ueyama, T. *J. Appl. Polynics* and the modified for such systems 17 Cowie, J. M. G. *Polymer* 1966, 7, 487 equation may have to be modified for such systems.

The authors express their deep sense of appreciation to 21 Yathind
Professor *V. S. Regiunarie* Reg. Molecular Pionhysics Unit 8, 2033

8, 2033 Professor V. S. Raghvendra Rao, Molecular Biophysics Unit, 22 Kurata, M. and Yamakawa, H. J. Chem. Phys. 1958, 29, 311

1958, 29, 311

1958, 29, 311

1958, 29, 311

1958, 20, 20, 20, 10 and Stock Machines interest in this work. Financial assistance from CSIR, New *Forsch.* 1963, 3, 244
Delhi and I.I.Sc., Bangalore is gratefully acknowledged. 24 Beevers, R. B. Macromol Rev. Vol 3, pp.113–254 Delhi and I.I.Sc., Bangalore is gratefully acknowledged.

-
- *Edn.)* 1976, 14, 749, 759 and references therein
-
-
- *Tech. Memo.* No.33-242, Jet Prop. Lab. California, 1966
-
-
-
-
-
- 11 Krigbaum, W. R. and Tokita, N. J. Polym. Sci. 1960, 43, 467
-
-
- 14 Flory, P. J. and Fox, T. G. Jr, J. *Am. Chem. Soc.* 1951, 73,
-
-
-
- 18 Stockmayer, W. and Fixman, M. J. *Polym. Sci. (C)* 1963, 1, 137
- ACKNOWLEDGEMENT 19 Inagaki, H., Hayashi, K. and Matsuo, T. *Makromol Chem.* **1965** 84 80 1965, 84, 80
	- 20 Yathindra, N. and Rao, V. S. R. *Biopolymers* 1970, 9,783
	-
	-
	- 23 Kurata, M. and Stockmayer, W. H. Fortschr. Hochpolym.
	-